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Abstract: - This paper deals with assembling of the SC circuit matrix based on the status of switches. It is well 
known matrix assembly process using two-graphs or transformation graphs. However, the matrix can be built 
only on the basis of the status switches in the SC circuit. This procedure is somewhat simpler than the method 
of two-graphs. Described method is compared with other methods, too. 
 
 
Key-Words: - SC circuit, status of switches, nodal charge method, capacitance matrix, four phases of switching. 
 

1 Introduction 
It is well known matrix assembly process using 

two-graphs [1], [2], [3] or transformation graphs [4], 
[5], [6] describing the circuit at all four stages of 
switching. The phases are marked as even (with 
the letters E) and odd (O) and the nodes are 
numbered to avoid confusion. 
 
 

2 Problem Formulation 
The two-graph method uses a separate 

denomination of node of voltages and currents, 
voltage triangle, the square of the current. This 
method can be simplified as follows.  
 
 
2.1 Circuit with passive elements only 
Circuit containing capacitor C1 and a switched 
capacitor C, whose circuit diagram is shown in Fig.1 
can be described by the set of equations (1) for both 
phases.  
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Fig.1 Circuit containing a switched capacitor 
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After the Z-transform, a system of equations (1) can 
be rewritten into the form (2). 
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This system of equations (2) can be rewritten in 
next step into the matrix form, where the matrix of 
the system is (3) 
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ie. generally (4). 
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This matrix (3) consists of four partial submatrix, 
generally CEE, CEO, COE and COO. 

By comparing this matrix (3) with partial 
schematic diagrams in Fig.2 for both phases the 
submatrix can be obtained easy as follows, as we 
can see. 

The submatrix which are describing this circuit 
only in the even phase and in the odd phase are 
follows:  
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Fig.2 Diagrams of circuit for even and odd phases 
 

[ ] EEC=+∆ CCQ

V

E

E

11

1 ,
OOC=









∆
∆

C

C

Q

Q

VV

O

O

OO

0

01

2

1

21

 

      (5) 
Because charge EQ1∆  is given by equation 

EE VCCQ 111 ).( +=∆  and charge EQ1∆  is in first 
row which corresponds to the line 1E.=3E., and 
voltage V1E is in first column which corresponds to 
the column 1E.=3E., member CC +1  is in 1E.=3E. 
row and in the same column. Similarly can be 
assembled a second matrix (6). 
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Similarly we can also assemble the remaining 
matrix CEO, COE (7), too. However, rows are of 
opposite phase than columns and their elements 

must be multiplied by 2
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In the row 1E.=3E. is in the column 1O. member C1, 
ie. member simultaneously occurring in nodes 
1E.=3E. and 1O. In the row 1E.=3E. is in the 
column 2O.=4O. member C, ie. member 
simultaneously occurring in nodes 1E.=3E. and 

2O.=4O. Both multiplied by 2

1−
− z , of course. Sign 

of the C1 is positive, because from indexes of nodes 
1E.=3E. and 1O. one number (ie. 1) at the least is 
the same (ie. number of node is the same, no phase, 
the phase may be different). Thus after 

multiplication by 2

1−
− z  this member is 1

2

1

Cz
−

− . 
Sign of the C is negative, because from the indexes 
1E.=3E. and indexes 2O.=4O. no number is the 

same. Thus after multiplication by 2

1−
− z  this 

member will be CzCz 2

1
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+=−− . Similarly can 

be assembled a second matrix (8), too. 
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Rules for sign of the members are in Table 1. Sign 
of member, which is connected between output node 
of VVT and other node (except ground) is negative 
already. 
 
Table1. Rules for sign of C 
Phase: the same  different 
one number of nodes is the 
same 

 C  
Cz 2

1−
−  

no number of nodes is the 
same 

C−  
Cz 2

1
−

 
 
 
2.2 Circuit with active elements 
Let we are considering circuit containing voltage-to-
voltage transducer VVT [1], [2], three capacitors 
and the source of charge, whose circuit diagram is 
shown in Fig.3. Its equation is 23 .VAV =  [7],  

where A is voltage gain of the VVT. 

1. 2. 3.
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Fig.3 Circuit with a VVT 
 
This circuit can be described by nodal voltage 
method [1], [2] by the set of equations (9). 
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After overwriting set of equations (9) into following 
form (10) 

 

32

3323212

22121

.1.0

.).(.0

.).(

VVA

VCVCCVC

VCVCCQ

−=
−++−=

−+=∆

     (10) 

the matrix of the system is (11) 
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            (11) 
where matrix A: contains matrix of the voltage-to-
voltage transducer (VVT) only and CO: is the 
remaining part. 

The resulting matrix consists of partial 
(sub)matrixes [8]. 

The resulting capacitance matrix C consists of 
six following partial (sub)matrixes (12). 
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               (12) 
Because operational amplifier has not memory, are 
(sub)matrixes A: in positions EE and OO only. In 
other positions EO and OE these (sub)matrixes A:  
are not.  

Since an operational amplifier in a switched 
circuit processes high frequencies, the frequency 
characteristics of its amplification is taken into 
account by considering either one frequency Tω  

OT

TO

As

A
A

.

.

+
=

ω
ω

            (13) 

or both frequencies Tω , 2ω  
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of its diffraction, where 0A  is the maximum value 

of amplification in an open loop of feedback.  
The frequency response can be now calculated 

by substituting (13) or (14). 
 

 
   Table 2. Partial schematic diagrams and its matrix representation. 

Schematic 
diagram: 

Corresponding 
matrix: 
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A summary of relations between the matrix and 

the partial schematic diagram allow implementation 
of symbolic analysis [9], [10], is given in Table 2 
for an overview. 

The capacitor connected from output node of the 
operational amplifier (i.e. from node VVT) into a 
different node than the common, has in a column 
corresponding the index node always a negative 
sign. This node is always outside the main diagonal 
of matrix, as is shown from Fig.4 where is 
schematic diagram of simple circuit, and 
corresponding matrix (15). 

1. 2.
C

V1 V2=A.V1

∆Q

 
Fig.4 Sign of C is negative in matrix if index of 
column is the same as index of output node VVT 
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3 Examples 
This method whose principle was explained above 
will now be illustrated by solved two examples. 
 
 
3.1 Commented solutions in detail 
Consider the circuit from Fig.5, containing of four 
nodes, two capacitors and one operation amplifier. 

It is to be compiled his C matrix. 
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Fig.5 Circuit for example 
 
First it is necessary to draw the schematic diagrams 
separately for each phase, as is shown in Fig.6. 

In the even phase the circuit has three nodes, in 
odd phase two nodes. Therefore the capacitance 
matrix C will have five rows and five columns, too. 

The output of the operational amplifier is 
connected into node four, therefore into row four 
(ie. 4E. and 4O.) is necessary write the equation of 

the amplifier (ie. 34 .VAV = ), but in phases EE and 

OO only, therefore operational amplifier has not 
memory. 
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Fig.6 Schematic diagrams separately for both phases 
 

Thus parts of capacitance matrix C will be 
following: 
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This part will be added (sub)matrices for EE and 
OO phases in next steps:  

The members of the matrix are given by indexes 
of the rows and columns. For example in position 
row:1E.=2E., column: 1E.=E. is member: C1, 
because in the node: 1E=2E capacitor: C1 is 
connected: 

  [ ]1:.2.1

:.2.1

CEE

EE

=
=

.            (16) 

In position row: 3E, column: 4E is member: -C2, 
because capacitor C2 is connected between nodes: 
3E and: 4E, as we can see. 
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Thus will be: 
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Similarly we can also assemble the remaining 
matrix: in position row: 2O.=3O., column: 2O.=3O. 
is member C1+C2, because in node 2O=3O 
capacitors C1 and C2 are connected: 
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In position row: 2O.=3O., column: 4O. is the 
member -C2, because capacitor C2 is connected 
between nodes 2O.=3O. and 4O: 
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Thus will be: 
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Similarly in the matrix CEO, in position: row: 

2O.=3O., column: 1E.=2E. is the member 1
2

1
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− , 
because capacitor C1 is connected between nodes 
2O.=3O. and 1E.=2E. The numbers 2E. and 2O. are 
identical, therefore sign is positive in this case (ie.: 
+1), as we can see,  ie. this member is finally 

negative: 1
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In position: row: 2O.=3O., column 3E. is the 

member 2
2

1

Cz
−

− , because capacitor C2 is 
connected between nodes 2O.=3O. and 4E. The 
numbers 3O. and 3E. are identical, therefore sign is 
positive (ie.: +1), ie. this member is finally negative: 

2
2

1

).1.( Cz +−
−

. 

 








−=

−

2
2

1

:.3.2

:.3

CzOO

E

             (21) 

But in position: row: 2O.=3O., column 4E. is the 

member 2
2

1

Cz
−

, because capacitor C2 is connected 
between nodes 2O.=3O. and 4E. Sign is negative in 
this case (ie. -1), because from the indexes 1E.=3E. 

and 2O.=4O. no number is the same as we can see, 

ie. this member is finally 2
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ie. this (sub)matrix will be in following form:  
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Similarly the remaining matrix COE is following: 
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where member in row: 1E.=2E. and column: 

2O.=3O. is: 1
2

1
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because capacitor C1 is connected between nodes: 
2O.=3O. and: 1E.=2E.  

As we can see, the numbers: 2 in members: 2E. 
and 2O. are identical, therefore sign is positive (ie.: 
+1), ie. this member will be negative finally: 

1
2

1

).1.( Cz +−
−

. 
Thus the resulting capacitance matrix will be in 

following form (24). 
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3.2 Common solution without comment  
Previous solution has been very extensively 
commented. 

This can lead to the assumption that the 
described method is too laborious. Thus, the next 
example will be solved without comment. 

Consider the circuit from Fig.7, containing from 
five nodes, two capacitors, two switched capacitors 
and one operational amplifier with finite 
amplification A. 

Schematic diagrams separately for each phase 
are shown in Fig.8. 
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Fig.7 Schematic diagram to example  
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Fig. 8 Partial schematic diagrams 

 
Partial matrixes are following: 

+
















−++−
−+

=
=

+

==

000

0

:.4.3

:.2.1

:.5:.4.3:.2.1

24324

441

CCCCC

CCC

EE

EE

EEEEE

 

+
















−++−
−+

=+

==

000

0

:.3.2

:.1

:.5.4:.3.2:.1

24214

441

CCCCC

CCC

OO

O

OOOOO

 

+
















−+−
−+

=−+

==

−

000

0

:.3.2

:.1

)(

:.5:.4.3:.2.1

2424

441

2

1

CCCC

CCC

OO

O

z

EEEEE

 

+
















−+−
−+

=
=

−+

==

−

000

0

:.4.3

:.2.1

)(

:.5.4:.3.2:.1

2424

441

2

1

CCCC

CCC

EE

EE

z

OOOOO

 

 
 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bohumil Brtník

E-ISSN: 2224-266X 176 Issue 6, Volume 12, June 2013



+

















−

=

10

000

000

:.5

:.5:.4.3

AE

EEE

=
















−=
+

==

10

000

000

:.5.4

:.5.4:.4.2

AOO

OOOO

 































−
−++−+−

−++−

−
+−−++−

+−−+

=

=
=

=

====

−−−

−−

−−−

−−

10000

)(

00)(

00010

)(

0)(0

:.3.2

:.1

:.4.3

:.2.1

:.5.4.3.2:.1:.5:.4.3:.2.1

243242
2

1

42
2

1

4
2

1
4414

2

1

41
2

1

2
2

1

42
2

1

4
2

1

24214

4
2

1

41
2

1

441

A

CCCCCCzCCzCz

CCCCzCCz

A

CzCCzCzCCCCC

CzCCzCCC

OO

O

EE

EE

OOOOOEEEEE

 

             (25) 
 
 

4  Compared with others methods 
Method described above will now be compared with 
two common methods. 
 
 
4.1 Compared with two-graphs method  
For the purpose of comparison with the two-graph 
method [1], [2] will now solved the same example. 
In this case, the circuit is described by the matrix 
(26) 
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            (26) 

where AE , AE , AE and AE are submatrices. 
 Consider the same circuit ie. circuit from Fig.9 
with two capacitors, two switched capacitors and 
operational amplifier with finite amplification A.  

 The circuit has five nodes, the numbers of nodes 
are in the circle. 
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Fig.9 Schematic diagram for comparison 
 
Schematic diagrams separately for each phase of 
this circuit are shown in Fig.10. The numbers of 
nodes in square are for the charge, in the triangle for 
the voltage. 
 

 

C2

C1

1.

+

_

C3

C2

C1

+

_

C3

1. 0. 0.1.3.2. 2. 1.

A A
C4

C4

2. 2. 3.

 
 

E-phase:                           O-phase: 
 

Fig. 10 Partial schematic diagrams 
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 In the two-graph method, two tables must be 
now prepared. Therefore matrix formulation 

required assembling following four tables for even 
and odd phases: 

 
Table for AE matrix:     Table for AO matrix: 
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The matrixes based on these tables are (27), (28). 
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Table for BE matrix:     Table for BO matrix: 

002030

321322.

002000

021221.
..4321

to

fromgrV

to

fromgrQ
out

VVT

inp

VVT
CCCCElement

O

E

−

−
,

002030

321221.

002000

021022.
..4321

to

fromgrV

to

fromgrQ
out

VVT

inp

VVT
CCCCElement

E

o

−

−
 

 
The matrixes based on these tables are (29), (30). 

AE = 

















−++−
−+

∆∆∆

000

0

.2

.1

.3.2.1

24324

441

CCCCC

CCC
, (29)  AO = 

















−++−
−+

∆∆∆

000

0

.2

.1

.3.2.1

24214

441

CCCCC

CCC
 (30) 

 
The resulting matrix C is after substituting into (26) 
in following form (31). 
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4.2 Compared with full matrix method  
For the purpose of comparison with the full matrix 
method [11], [7] will now solved the same example 
from the Fig.9. The circuit has five nodes and so its 
capacitance 

OC
~  matrix (32) will have them, too.  
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      (32) 

 But in matrix last row is replaced by 
equation of the VVT, i.e. 35 .VAV = . Thus the 

capacitance matrix CO is in form (33). 
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Thus the resulting capacitance matrix C containing 
all phases of switching will then have the following 
form (34), matrix consists of ten rows and ten 
columns. This matrix is somewhat unclear, as we 
can see. Thus matrix (34) is in last step reduced by 
closing the switches into its final form (35). Final 
matrix (35) consists from six rows and six columns, 
as we can see. 
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              (34) 
 

The last rows  in OEC  and EOC  matrix consists 

of all zeros, because an operational amplifier has 
not memory (i.e. transfer between phases E, O is 
equal zero, too). 

As we can see, the resulting matrices (25) and 
(35) are identical. 
 

 































−
−++−+−

−++−

−
+−−++−

+−−+

−−−

−−

−−−

−−

10000

)(

00)(

00010

)(

0)(0

243242
2

1

42
2

1

4
2

1
4414

2

1

41
2

1

2
2

1

42
2

1

4
2

1

24214

4
2

1

41
2

1

441

A

CCCCCCzCCzCz

CCCCzCCz

A

CzCCzCzCCCCC

CzCCzCCC

     (35) 

 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Bohumil Brtník

E-ISSN: 2224-266X 179 Issue 6, Volume 12, June 2013



 
Table 3 Comparison table 
 

Step The two-graphs 
method: 

Evaluation state 
of switches: 

Full-matrix method: 

1. Drawing a circuit diagram Drawing a circuit diagram Drawing a circuit diagram 
2. Drawing a circuit diagram for 

each phase with dual 
numbering nodes 

Drawing a circuit diagram 
for each phase 

Writing of the capacitance 
matrix 

3. Assembly four tables for each 
of the four phases 

Assembly of four matrices 
for each of the four phases 

Replacing row by equation of 
the VVT 

4. Assembly of four matrices for 
each of the four phases 

Assembly resulting matrix Assembly resulting 
capacitance matrix 

5. Assembly resulting matrix  -  Reduction by closing switch 
Note: Nodes have two different 

numbers in each phase, one 
for the charge other for 
voltage. 

Nodes have one number Nodes have one number 

 
 
 
5 Conclusions from comparison 
 The comparison of the three methods is 
illustrated in Table 3. Individual steps of solution 
are described in this table in three columns.  
 As we can see (from Fig.10), the method of two 
graphs requires two different type numbers of nodes 
in each phase, too, one for the charge (in square), 
and other for voltage (in triangle). Therefore this 
way becomes these schemas a somewhat 
complicated. 
 The method of evaluation state of switches 
requires only one type of node numbers (Fig.8). 
 While the two-graph method requires redrawing 
schematic diagrams, full-matrix then repeated 
rewriting matrices. 
 
 
6 Conclusion 
 Proposed method described above, i.e. evaluation 
of the status of switches, based on the general 
coordinate transformation method, described in [7], 
etc. In this case, the parameters of the elements 
appear in the resulting matrix on the positions given 
by identification of the nodes of the elements with 
the nodes of the circuit, as is shown in Fig.11. 
 Circuit consists of two elements G, whose matrix 
is (32) 
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             (32) 

and resulting matrix of this circuit which is obtained 

G G1

G2

.1
~

.2
~

.1 .2

.0  
Fig. 11 Coordinate transformation method 
 
through transformations of coordinates, is (33) 
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GGG

GG            (33) 

where index .~  includes an element 1G  and index 

.~~  includes an element 2G . The numbers are 
indexes of nodes. 

This general method is applied to the switching 

circuits. In position i.g. .)1
~~

(.),2
~

..(2  in above 

described method can be member i.g. .4.3 EE = .  
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